20th February 2025 Department of Physics, Faculty of Science, University of Split

PHOTOCLIM 2^{nd} ANNUAL MEETING PRESENTATION OF THE RESULTS ACHIEVED DURING THE FIRST PROJECT YEAR

PROJECT FUNDED BY THE CROATIAN SCIENCE FOUNDATION IP-2022-10-8859

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Fragility of primary production under climate change

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Project logo created

Project website created: photoclim.org

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 のへで

First year work plan

List of deliverables:

- D1. Annual project work meeting
- D2. Primary production time series data acquired
- D3. Global marine phytoplankton production dataset accessed
- D4. Local data repository created
- D5. Primary production measurements in the Adriatic
- D6. Modern capital theory applied to the study of marine photosynthesis
- D7. Measuring primary production workshop
- D8. Educational material on primary production measurements
- D9. Training (Training in primary production measurements at the Plymouth Marine Laboratory)
- D10. Training (Attendance of Summer Lecture Series Frontiers in Ocean Optics and Ocean Colour)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

- D11. Attendance at conferences
- D12. Scientific publications

D1. Annual project work meeting

On the 23rd February 2024 we had our Kickoff meeting at the Faculty of Science in Split.

Meeting agenda

09:15 - 09:25 Opening Remarks
09:25 - 09:45 Project Presentation
09:45 - 10:00 Planning of Project Activities
Presentation of the work plan for the entire project period
Presentation of the financial plan for the entire project period
10:00 - 10:30 Coffee & Discussion
10:30 - 11:30 Planning of Project Activities for the First Year

- Data Collection Data Digitization Local Data Storage Data Processing
- $11{:}30-12{:}00$ Coffee & Discussion
- 12:00 12:30 Lecture: Assoc. Prof. Dr. Davor Mance: Ecological Economics
- 12:30 13:00 Planning of Project Workshop: Measurement of Primary Production
- 13:00 15:00 Lunch

D2. Primary production time series data acquired

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Stončica	1962	
Kaštelanski zaljev	1962	
Bermuda Atlantic Time Series	1988	bats.bios.edu
Hawaii Ocean Time Series	1988	hahana.so est.hawaii.edu/hot/hot-dogs
Cariaco	1996	imars.marine.usf.edu/car
Monterey Bay	1988	www.mbari.org/bog
La Coruña	1990	www.seriestemporales-ieo.com
Western Channel Observatory	1992	www.western channel observatory.org.uk

- + 1148 annual time series from 483 locations (Cloern et al., 2014)
- + 125 time series longer than 8 years with more than 10 measurements per year (Winder & Cloern, 2010)

D2. Primary production time series data acquired

Such data are mostly publicly available.

Data typically comes in the form which requires significant effort to prepare the data for analysis.

The production data also come with optical data, which requires significantly more processing.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへで

An example from BATS

Table 14.1: Partial List of Measurements Made by BBOP & BATS

BBOP	
Direct Measur	rements:
Ed(z,l)	Downwelling vector irradiance (325, 340, 380, 412, 443, 488, 510, 555, 565, 665 & 683
mm) E $\mu(0^+ 1)$	Incident irradiance (325-340-380-412-443-488-510-555-565-665-& 683-nm)
$L_{II}(z,l)$	Upwelling radiance (325, 340, 380, 412, 443, 488, 510, 555, 565, 665 & 683 nm)
chl-fl(z)	Chlorophyll fluorescence with a WetStar fluorometer
T(z) & S(z)	Temperature and conductivity with Ocean Sensors probes (calibrations by Satlantic)
atp(1)	Particulate absorption spectrum by QF1 Detrited particle absorption spectrum by MaOH avtraction
a _{vs} (l)	Colored dissolved absorption spectrum
chl-a(z)	Discrete chlorophyll a determinations via Turner fluorometry
Primary Deriv	red Products:
L _{WN} (l)	Normalized water leaving radiance (325, 340, 380, 412, 443, 488, 510, 555, 565, 665 &
885 mm) Rps(0".1)	In-water remote sensing reflectance (325, 340, 380, 412, 443, 488, 510, 555, 565, 665 &
683 nm)	
$K_d(z,l)$	Attenuation coefficient for Ed(z,l) (325, 340, 380, 412, 443, 488, 510, 555, 565, 665 &
683 nm)	Attenuation coefficient for L (al) (225 240 200 412 442 400 510 555 565 665 6
683 nm)	Auenuation coefficient for Lu(z,f) (323, 340, 380, 412, 445, 488, 510, 555, 565, 665 &
aph(1)	Phytoplankton absorption spectrum (= ap(l) - adet(l))
<par(z)></par(z)>	Daily mean photosynthetically available radiation at depths of the <i>in situ</i> C ¹⁴ incubations

U.S. JGOFS BATS (NSF) AND RELATED BIOGEOCHEMISTRY SAMPLING PROGRAMS

Primary Production (in situ ¹⁴ C incubation)	Sinking flux (sediment trap array)								
Phytoplankton pigments (fluorometric & HPLC)	Nutrients (NO3+NO2, SiO4, PO4)								
CO2 system (alkalinity, TCO2 and pCO2)	Continuous atmosphere & surface								
pCO ₂									
Dissolved oxygen (continuous & discrete)	Zooplankton biomass & grazing								
POC & PON (POP infrequently)	DOC & DON (DOP infrequently)								
Full water column, WOCE-standard CTD profile	Bacterial abundance and rates								
Validation spatial cruises (5 days, 4cruises/year)	Deep ocean sediment sinking								
fluxes									

An example of optical data from BATS

11.61885295	6.7889543	3 2.48758	1034 - 999	2.21340063	0.00413555	8.00071333	8.80351293	8.8233085	8.85797826	@.@08L6477	8.89808758	8.84350776	2.21843253	8.80849245	0.00115705	9.70306432	155.3025571	237,1134094	31.46187022	52.53540436	59.93483683	63.19990673	66.52238191	57.25186901	54.76213189
11.05176745	6.3347187	2.18750	-999	@.@L096546	8.80334192	8.80855556	8.80342992	8.82353866	8.85458809	0.87645854	9.8564835	9.84355827	0.00975867	9.80841409	9.00306500	0.09315524	154.3425453	235,3498035	30.99563187	51.58928026	58.45555789	61.58532555	64.65567005	55.5508982	55.05539952
18.55483865	5.9823415	1.98534	134 - 999	#.#L#9657#	0.00393833	#.#0868704	0.00218902	0.01558506	0.05111300	0.07231799	0.00340015	0.03094564	0.00901735	9.00043848	0.00097565	0.6582014	153,1559388	233,273839	58.75632187	51.87186529	58.17796387	61.16456448	64.38929092	55.25583293	52.88785285
18.35589733	5.6995275	4 1.8520	429 - 999	e.eteedess	0.00336259	0.00010113	0.00106343	0.01853718	0.01020014	0.00070703	0.07070735	0.000312	0.00011306	0.00011014	0.00000000	0.00353837	153.5785668	214,20645	21.05215643	51.037000db	10.1368237	AZ. DASELAND	45.6007945	10.28089111	LL. OF VEHICLE
9.3555608	5.100000	1 63723	138 .999	8.80925668	2. 20421414	2.20255404	8.80156863	8.8163772	8.84136200	8.85353676	8.87258283	8.83345508	8.80750575	2.00037723	8.80825411	0.00550444	153.5308377	234.30(5347	30.08208289	51.58160635	55.45526120	41 A7754005	64 68512289	55,455991199	55.04022487
9.05584779	4.9359919	1.58275	374 .999	8.0003033	0.004215	0.00048338	0.00343575	0.0153835	0.84122255	0.05004718	0.05578747	0.05202558	0.00395577	0.00035482	0.00071777	9.99229955	154.8483586	235.0995827	31.14755374	51.94953145	59.27158245	62.45987945	45.72467155	56.53569547	54.08339586
8.76568829	4.4484904	1.1852	22 .999	8.00001673	0.00399213	#. #06.0VHR	0.00127003	0.01433595	w.wishthis	0.05729518	0.05695748	0.01005004	0.00555185	0.00011411	0.00057902	0.6982972	153,3228828	233.8722244	21.03681785	51.7658294	59.1116415	62.1025159	45.57889093	56.43228066	54.02798666
0.28246789	4.3824565	1 1.26394	1777 - 999	8.00005356	0.00397918	0.00050544	0.00113256	0.01323709	0.03651507	0.05426847	9.06382926	0.02072107	0.00618707	0.00031874	9.00063646	0.60512967	153.968493	233,2993034	30.04772334	\$1.48403083	50.63031093	61.68756655	64.95416653	55.08592080	\$3.36200761
7.91568456	4.1298317	1 1.1551	021 -999	8.80729943	8.80480805	8.80837803	8.00095856	8.81323709	9,85425262	2,25343136	9.86868948	4.4271169	9.80576898	9.00030565	9.00056795	9.69353842	153,9598684	235,0607682	31.13413806	51.92952097	59.28838912	62.58286835	65.64485293	56.45256466	53.9358L646
7.0332/450	5,9403667	1.0343	181 - 979	0,00342513	4,0033005	8.80840815	8,80605508	8.81341499	4.45139967	4,64907515	8,85839803	4.42379203	8.60243574	9,00020058	4,00052355	9,867/0805	154,9911199	233,3534505	30.92407140	51.08085084	50.96332020	61.09995527	45.33539300	50.18455634	55.75571524
2 debass	h 5600018	6 0.04634	182	a abiai 207	4 000165416	a philipped	a philippin			8 84593924	a alabhhhh	4 #2253775	a absocat	a ababilat	a philosophic	a consider	153 6653469	The Theorem	21 1506478	52 01538344	SG STREEPSS	62 64053781	CC onberant	66 28338682	La balabable
6.79203393	3.4819907	0.03400	087 -929	8,80630897	8.00482153	2,00000000	2,00053404	2.005499993	8.82772825	8.84295700	9.85176892	9,82236516	9,00456604	9.00023346	9.00035545	9,60433406	153,8588965	233,5009580	30.91249780	51.49962080	50.7251762	61.04015426	65.06273061	55,92709950	53.43539253
6.53133532	3.2291233	0.79971	1985 - 999	8.00071555	0.0035555	8.80854835	8.80856387	0.00551522	0.02613543	0.04303154	0.84972567	0.02120055	0.00428206	0.0002326	0.00055733	9.65343853	152.4225532	232.6405281	30.8651703	51.54003475	58.8639799	62.05434363	65.53439921	56.2311562	53.83389007
6.25084155	3.0371148	6.73121	287 - 999	8.805563.5	8.80483857	8.80859543	8.80847864	0.00818218	0.02458208	8.85593934	0.84353863	0.02018422	0.00402128	0.00022353	0.00053571	0.17854545	151/7234575	231.5555259	30.76685886	51.48659586	58.76742782	61.97237587	45.24784065	56.18554491	55.88977476
5.97856827	2.8366425	0.6785	1363 -999	8.80525845	0.00393285	8.00006578	8.0001572	0.00353322	0.02331253	0.03720238	8.85550378	0.01914594	0.00377245	8.80820907	0.00030838	8.679339	153.653888	235.4129148	30.64692358	\$1.07931942	58.29786552	61.48146644	64.64185868	\$5.55323546	53.16548858
2024518 2.7	2437907 4	4.4.248335	-999 0.085	43931 0.064	06996 0.00033	0.0003	17220 0.007	0.03	0.035	64731 0.043	0.03	117332 0.081	5641 0.00	0.00	1377163 0.68	N97512 152.4	124414 111.03	10.00 14.4272	17114 50.3731	\$777 58,48	03005 65.60	200968 64,779	20145 55,400	1783 53,264	64643 48,854;
13199 7.5	0009404 8	, 5071.5458	-999 0.085	0.004	12435 0.00032	0.0003	0.000	0.000	NET#6 0.033	73060 0.041	14047 0.01	725714 0.081	35657 0.08	717130 0.08	0.64	1236086 152.2	100774 131.59	19473 M. 9093	50003 50,6565	0114 59.4L	64118 6J.20	629877 65,55	30048 50.438	3359 54,453	35715 49,501:
2.10110(41	0.4110418		8.80441283	8.80400577	8.80832314	8.80823834	8.80571972	8. 81853853	8.83866872	8.43433271	8.81556554	8.802MM3	8.00017814	8.80828245	8.57125805	148.8685989	228.6617183	30.23562879	SO, IBORSTEI	57,5227102	60.55198946	43.64982128	M. 77156739	32-41200820	48.097733341
2.19752646	0.4594812	12 -929	#. 00415253	4.0000022	0.00025203	0.00000556	8.89534603	0.01750656	0.02010915	0.03624553	9.91400000	0.00220015	9.00117238	9.00017913	9.67354193	158.1205483	229.1571141	30.20040550	50.2228859	\$7.25298768	60.22532947	63-34682662	54.45062052	52.03062621	47,74833628
2.08775639	0.4303845	-909	8.00450003	0.0040357	0.00034993	9.00018693	0.00502336	0.01659000	0.0233347	0.0552293	0.01405516	0.00353955	9.0021034	0.00015523	9,604573	153.6798233	233,3463249	31.13007141	52.06453888	59.52218122	62.05685623	66.16834639	56,97159591	54.54968748	50.01533177
1.97235175	0.3950775	1 - 999	8.8033479	8.00412315	8.00039832	0.00018543	0.00458157	8.81553523	@.@2654315	@.@5371747	0.0133074	8.80349992	0.00015742	9.00013395	9.65351174	153.879243	232.3669822	30.97335755	51.82556543	59.38592821	62.64541284	65.9718504	56.83189437	54.45195282	49.92782554
1.85335547	0.5577593	- 999	8.00334835	8.80337544	e.eoe.ac243	8.00013399	8.0045225	8.81472996	0.02523557	0.05220668	8.81257295	0.002534	0.00215848	0.00013224	8.86558255	148.808537	229.8458125	58.04321576	50.08177252	57.23525877	60.23996876	43.57165221	54.49533326	52.17985415	47.8854813
1. 16.18.0001	0.101111			W. W0377855	e.emerrer	P. POPLETAR		W. WILL/WINKS		a. alast shirt		W. WAALF285	8.80812222	a sources	W. 60,000,07	100.00000	228.120.00.00	PP. BURKLINT	ST. ADDRESS	So. SECENCES	59.5371516B	44.01712982	ST. OF DODDESS	ST. CONTRACTO	AT. 228.08176
1.588335544	0.2003/08	5	8.00385953	8.80376326	8.00017001	8.00001001	8.00151004	8.81347364	8.82230500	8.82543418	8.8180005	8.80326243	8.80813814	8.00002313	8.67128203	158 5805485	238, 225243	30.67255177	51.51515638	55.6336947	41.07713483	45.24234543	55,21555661	55.86000545	40.14144017
1.499524#1	0.2657248	5 .999	0.00257128	8.00330424	8.80856724	8.80837508	8.80325845	0.01170578	0.02050202	0.02720575	0.01056244	0.00351535	0.00011992	9,00004154	0.17259523	110.0538317	229,3538479	35.48545537	50.92508355	55.15488185	41.55551995	64.035050.74	55.62937668	55.27299927	45.84588434
1.48797683	0.2484264	17 .999		0.00793184	#. #0836.684	0.00003379	0.00303766	0.01306226	0.01070865	0.02597343	0.00970533	0.00171543	0.00011663	0.00033294	0.67039332	149.0205344	222,5585555	88.17141143	50.25564721	57.45178071	60.54131576	43.69681853	54.79141782	52.460989384	48.13487184
1.336397	0.2295766	15 - 999	0.00363222	8.00000005	0.00003886	0.00006717	0.00300023	0.01030565	0.01833379	0.02083705	0.00025668	0.00355800	0.00011348	0.0003205	0.66885853	147.1255480	224.4217437	29.73563382	49.64979941	56.73343686	59.72995439	62.03668543	54.08553787	\$1.79987992	47.54729531
1.25958230	0.2645174	12 - 999	0,00321656	8.00376458	0.00000057	8,00003334	0,00051155	8.00993539	4.413333	0.02300915	9,00275814	0,00151802	@.@00L0605	9,0000207	8.6590499	148.0752131	226,3098132	30.03415035	50.38648272	57.50511500	60.64982486	63.06134335	54.97183788	52.65955787	40.28553280
1.13559049	0.1311846	4 .979	4.00131413	4,0035082	4,00032997	8.60601308	8,8034559	8,80930504	0.01311250	8,82353445	0.00030173	9,00345154	#, #0FL041	4.8080007	9.17433543	149,7778	219,339(2195	30.54323082	51.099333334	50.41591150	41.699004177	64.96538485	55.99923043	55.54592029	49.13948683
1.1353454	0.1571253		*. #0346558	8.00376865	a. execution	* . #08033702	0.00229625		0.01033950		0.0075083	0,00330752	a . BOBDY/CB	-999 0.07	112155 145.	0030913 227.9	29244 58,328	NN#53 58,7183	10007 57,9811	9562 63.26	33379 64,40	000003 55,49	30,000 53,345	19953 48,724	03838 -999
1.01307241	0.1434265		8.00356204	8.0020093	8.00026568	8.0003654	8.00227644	8.00334218	8.814005	9.82003656	8.00717251	9.00122872	9.00001917	-992 0.65	735973 146	2373277 223.3	37453 29.614	51437 48,5284	15612 56.571	6844 59.60	39943 63.36	145204 54.0X	00202 55.710	42,40	20973 -999
0.958333335	0.1355568	6 .929	0.00353194	8,00386515	0.00027354	8,80803833	8.80354774	0.00739215	0.01407177	0.01515679	9,00650553	0.00115214	9,80805468	-999 0.64	984518 147.	8327292 225.28	53416 38,894	75802 58.3773	3383 57,5834	13332 68,77	53167 64,813	133807 55,114	00838 52,787	58808 48,356	06238 -999
0.91181293	0.1277506	15 - 999	8.00303528	0.00358778	0.00023202	8.80882575	8.80375563	0.00300654	0.0134386	0.01842364	0.00649178	0.00309182	0.00099811	-999 0.63	95327 145.	0722418 226.44	29848 38,250	98273 58.6634	CTET2 57,9900	2997 60.27	52953 64.54	750233 55.000	16633 53,297	58985 48.857	01288 - 999
0.865645	0.118038	. 999	8.80279768	0.00357653	0.00021227	8.80883292	0.00353274	8.00653892	0.01381052	0.01355204	0.00616666	0.00383578	0.0009135	-999 0.66	197958 146.	4836593 323.7	156366 29,783	7858 49.8591	13273 52.0531	157 68.225	64832 63.429	613232 54.61	13437 52,133	33726 47.884	15686 -999
0.01768076	0.1895308	10 - 979	8.02221922	0.00359254	0.00025803	9.00004514	0.00150003	0.00025705	0.01319655	0.01600000	9.00525505	9,00006332	9.000054	-999 0.65	3349 145.	1606308 221.6/	199.203 29,203	49,546	70833 56.1271	560 59,12	21472 62.26	547278 53,56	34168 55.375	37293 46.998	11218 -929
0.71408547	0.0000777		8.003355413	8.803553317	8.00027535	8.8000323	8.80130354	8.80556568	4. 41 MUTO	8.81551164	4,00535713	8. BODD1458	8.80000324	-997 0.09	111111 145	7170304 134.00	10,9477 23,450	10037 03,020	2007 53,525	10038 57,70 1003 68,85	00,001 02,001	54556V 54,20	5144 53.19	00013 47,339	05403 - 979
0.05113837	0.0837218	11 . 1995	8.85771711	8.00100.015	8.00034418	8.80000313	8.0017185	8.80324413	8.81856.335	8.81485888	8.80581154	8.80881114	8.80808115	-593 0.45	12141 141	MATTYLE 122.44	176417 18.771	71.003 43.8581	71313 32.3011	1515 64.12	41843 63.55	101111 54.710	100.015 53.45	44.110	0.000 .000
0.65632783	0.0784236	- 999	0.00334443	0,00300003	0.000337	0.00021644	0.00113743	0.00234303	0.01005363	0.01425643	0.00477065	0.00077592	0.00007575	-993 0.64	N2126 144	2472663 220.50	97206 29,214	26533 48,4725	80508 56,987	1016 59,96	66546 63,30	721805 52,611	2643 55.34	44375 47,862	21105 -999
0.63295126	0.0726471	-929	8,00347522	8.00305333	0.00034505	8.00000555	0.00325307	8.00466543	0.00956548	0.01366309	9,00453405	0.00073953	9,00007043	-993 0.64	002133 145.	.081472 221.00	123509 29,464	33602 43,3083	33853 54,3234	9334 59,29	09467 62,535	556894 53,80	24293 51.493	24105 47.297	91664 -999
0.554375#5	0.0070918	15 - 979	0,00202345	8.00333877	8.0002994	8.80804473	0,00037375	8.80444564	0,0091366	0.0131356	0,00431308	9,80868663	0.0003436	-999 0.65	127921 144.	8541253 221.5	140645 29,496	5485 49,425	22119 54,537	7568 59,67	65068 62,850	822802 54,11	54698 53.826	64468 47,505	10442 -999
0.56532429	0.0124903	5 - 555	8.80252809	0,00381593	0.00024812	*.808022007	8,8089239	0,00421159	0.00071819	0.0129323	0.00411104	0,00004333	0,0003727	-999 0.49	877612 143.	1419918 255.9	2106 29,383	17917 48,999	54,857	4329 59/21	32205 62.37	729312 53771	56543 51,477	30502 47,203	09333 -999
0.53558637	0.0576814		8.00311600	8.00791563	a postonia	a abballs	a execution	0.00700.718	0.00071003	0.01307977	0.00771000	0.00000755	8.80007995	-999 0.64	11041 141	011213 333.0	101293 29.023	PRESS 49, 5585	VSES8 58,5090	NSRS 59,68	98585 8J.88	15017 54.15 (41)45 54.36	CHINA 53.898	70548 47.575	2008 - 999
0.43334657	0.0433854		8.00223855	8.0012(453	P. 00020314	P. 00001103	P. POP24522	2.00153608	2.00751500	8.81395729	2.00151503	9.00055402	P. POP07822	-992 0.64	M1000 143	1149503 258.7	134309 29,850	177 48.6231	17208 55,5757	082 58.60	9928 65.21	391243 53.820	13343 58.82	23305 44.577	47155
648333355 44.	63829182 4	15.5568127	42.63994597	35.37974582	33.37567789	8.80979458	8,30934803	0.35883307	0.25329978	0.43518178	0.44399113	0,77548800	0.2779329	9.34595495	0.0145005	0.01970929	0.41234866	90.45951937	137.6391574	17.8304334	29.58859185	33.05454064	34.43589995	35.0853MM	30.82981485
52566022 99.	73185291 3	18.295741#7	35.58968635	22.2799832	29.83833972	8.80987244	#.#9487355	8.3563826	0.25883502	0.00537545	0.41604333	0.77387873	0.25543573	0.33357887	0.01233058	0.01827992	0.05483.006	103.7967489	154.9741172	20.3595457	33.72327949	38.3346949	40.07888328	42.09030454	36.038356.99
10368011 22.	83362672 3	17.95509999	25.27676378	54.20682432	12.1022521	8.00005429	0.00007118	0.35897796	4.35386805	4.36515813	0.27060032	4.2398783	4.22889276	4,22965824	0.00520218	4.41694105	4.45779264	99.75171125	151.62154.06	19.97518059	22.99591417	37.39769773	22,03554559	40.9363172	25.0455.909
20543457 37.	39314317 3	15.00690432	31.74839558	8.65424453	7.09093172	e.e0729513	4.65791631	8.12842854	4.21357778	0.32850302	4.33643813	4,3092799	9.20429837	9.99993406	2.8044527	9,80388952	9.46343637	509,3465976	153,4567869	20.14342446	33.33673499	37,9295403	22,63199135	41.61772359	35.68592366
30210700 JS.	3136-6083	5.00000042	29.05339971	3,15000002	4,851104/5	#. #00/75002	4.455923847	#.11035#/9	4.38314513	4.31391328	4,32470023	8. TTA MICH	4.17106204	*. COLLING	0.00353857	4.00033755	4.45374848	001,0434250	153,8338343	10.11041941	33,48542077	37.393238177	39.04203027	41.0277909	35.61738685
23305326 34.	0919748 8	0.52815191	25. 27223192	1.95794549	1.45252816		8.8579585	8.89370898	4.17575212	0.27680923	8.28671853	8.26329848	9.17188122	8.87290945	0.00257843	8.8055425	9.01611888	99,16568899	158.8129482	19,76587453	22.79178204	27.15842929	SR. TERMANT	00.72598351	34.83666821
74379686 21	63536325 2	7.04348959	22.43512999	1,11647802	0.02070403	9,00553524	0,0373032	9,80227604	9,9634960	8,26797662	9,20355514	9,26526866	9.96891145	9,87865607	9,80337703	9,00557919	9,45375707	99,74367033	153,7152036	19.05339537	22.03454024	37,2604608	30.08671995	40.03044787	34.93286346
13539041 29.	95228049 2	6.14390895	20.68003554	8,7952979	@.58382757	8.80524802	@.@3355327	8.87350865	9.253588.38	2.24481522	9.25842964	@.34555902	@.15435@34	9.05358784	9.80206558	9,80491374	9.45356884	99.33587781	153,3538241	19.7893513	32.73081399	37.12998354	38.74933865	40.63095139	34.78134057
35144654 28.	49534335 2	4.57929435	29.03441129	0.53756818	0.40650406	#.00512858	#2833458	@.#6533507	0.3433956	0.2297415	0.24516865	0.23352318	8.34490693	0.05843748	0.00295244	0.00476662	0.45456429	99.92335642	152,2941937	19.96467423	33.035826M	37.58073174	39.18748257	41.14475541	35.15546717
21500128 28.	24979727 2	3.92703429	17.8498855	8.29337754	0.23293788	8.80290802	8.82446688	8.8583389	0.13313478	8.21977923	8.2366486	0.22504415	0.13932911	0.05481129	0.00383504	0.00456553	0.65857644	98.71275688	149,9433341	19.55958635	32.33454888	36.64152552	38.18797658	40.06572455	34.25497943
21/6632 26.	222286558 2	1.20.00001	14.707007745	8.2000/P/S	0.15/0/12	8.80285577	0.02053550	0.0511/5/2	0.12282575	0.2005/0/2	4.326/6/56	4. 31529/54	0.1/10089	8.8565290B	0.00357913	0.00225179	4. E10411303	99.11/11949 00.14/11949	148.51718/5	10.0813434	11.1011202	26.54741484	AL. 11779999	10.14305060	34.112290640
N.W064 24	08541287	2.41541783	11.5995854	P. F7441804	9.856.00716	P. POMAGAAR	P. PI 147163	8.84853329	8.30531477	8.15230841	0.20052143	8,2238156	9.11665412	0.04399287	0.00134318	9.00355343	0.45305152	35.65419122	158.1111445	10.55543775	12.19038112	35,78538/29	35.28556414	40.13455042	M. 1512M.28
MCMAINT 22.	79815685	8. 17111148	12.41861235	0.007111111	F. POR0200	8.89447313	0.01155799	8.81641129	0.0111100	0.17024527	0.10900911	0.38381718	0.30971111	0.01100164	0.00110108	8.80335501	0.61212122	10, 101000	144.5568282	19,3114,994	12.26881424	30. 18721481	35.17138941	40.000803.78	14.2416(511)
16805741 22.	47958364	7.80825799	11.64337142	0.0229548	0.05383838	0.00458828	0.01174995	0.03270253	0.00220766	0.26383165	0.18213175	0.17786764	0.20521209	0.0335635	0.00121002	0.00330692	9.4463462	97.13168357	147.558148	19.24579489	21.79709273	26.05158586	27.58186954	29.43362644	33.68758548
70079531 20.	75403388	6.23475157	10.35158581	0.01415075	2.84361111	8.00453214	8,80992968	8.82546572	0.00439834	@. 15364558	8.17145877	0.36877595	0.09077572	9.83431451	0.0012097	9,80395912	0.44753148	97.63346547	548,5948639	19.37967948	32.02951036	36.29146993	37.04069544	29,78613681	33.94167636
34727747 20.	11325022 1	15.40354131	9.55455834	8.00551815	8.85670173	8.80455466	8.80546428	8.82599364	@.@7000822	@.3433129	Q. 25227335	9.35873837	0.00012245	9.83353519	9.00113135	9.80353844	Q.44505815	97.22964029	147.681371	19.22158666	31.74542571	35.94233975	37,44442679	39.26836533	33.56638031
15,35885175	14,874999	03 8.8717	0.002	39035 0.033	56583 0.08441	734 0.0874	0.023	0.073	329999 0.135	05754 0.1354	0.15	127683 0.088	72025 0.02	0.08	189683 0.08	271911 0.446	48076 97.833	147.511	18713 19,2451	397 31.7%	33.407 38.450	655713 37.582	35757 35.422	3489 33.894	19818 31,5480
17.62082830	13. 100118	14 7.5326	1005 1000	8.82720875	8.80120305	8.80551551	8.81610935	8.86321213	8.11666571	8,129205	8.12000014	8.87916693	8,82563858	R. BORDEAKS	9,8022021	9.44820255	96. 24L4 204A	146, 1001064	19.01143063	21.48259689	35.550836A	37,03353589	30 03030734	33.18229645	21.44214351
16,93649125	12, 136623	45 6.8366	745 -999	8,82596317	8,8044410	8,8045756	₹.₹1572805	8.8585476	8.11275846	8.13356798	9.13420903	8.87517734	8.82374846	9,80893558	9,80224154	9,44840203	36.07253864	146.2135680	19.08468366	31.38696649	25,52243021	37,03553341	30.03145964	33,1825300	31,44533477

D2. Collecting data from lesser-known sources

Region	Year	Jan	Feb	Mar	Apr	May	Jun J	ul J	Aug Se	Cot	Nov	Dec	P-E
Bedford Basin	1969												
Bedford Basin	1970												
Bedford Basin	1971												
Bedford Basin	1975												
Scotian Shelf	1976												
Bedford Basin	1976												
Labrador Sea	1977												
Scotian Shelf	1977												
Bedford Basin	1977												
Lab Sea/Davis Str/Baf	1 1978												
Labrador Sea	1978												
Scotian Shelf	1978												
Bedford Basin	1978												
Lancaster Sound	1979												
Ungava Bay NWT	1979												
Scotian Shelf	1979												
Bedford Basin	1979												
East Canadian Arctic	1980												
Front SW Azores	1981												
Foxe Basin	1981												
Hudson Bay	1982												
Mid Atlantic Ridge	1982												
Lab Shelf/Hudson Bay	1982												
Eastern Arctic	1983												
East Canadian Arctic	1983												
Grand Bank	1984												
Caribbean Sea	1984												
Jones Sound	1984												
Lab Shelf Ice Algae	1984												
Sargasso Sea	1984												
Grand Bank	1985												
Georges Bank Sarg Se	1985												
Labrador Shelf	1985												
Bedford Basin	1985												
Celtic Sea	1986												
Bedford Basin	1986												
Bedford Basin	1986												
New England Seamour	1987												
Bedford Basin	1987							1					
Georges Bank	1988												
Lab Shelf/Str Belle Isle	1988												
North Sargasso Sea	1988												

Archived data from Platt and Irwin

D2. Collecting data from lesser-known sources

Such data come in the form of reports, which have to be digitized by hand!

Thus far we have digitized some 20% of the entire dataset.

We estimate the entire dataset to have around 50 000 incubations, which ammounts to around 100 000 datapoints which have to be typed in.

An example from Bedford Basin

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

An example from Bedford Basin

BEDFORD BASIN

44°41'N 63°39'W

DATE: 31/08/76	SAMPLE DEP	TH: 5 m	SURFACE TEMP: 16.9°C
Light Intensity W m ⁻²	Specific Production mg C(mg Chl a) ⁻¹ hr ⁻¹	Light Intensity W m ⁻²	Specific Production mg C(mg Chl α) ⁻¹ hr ⁻¹
225.1 112.7 45.0 23.1 13.0 6.4 4.4 2.9 1.8 1.1	$11.55 \\ 11.58 \\ 10.43 \\ 6.79 \\ 4.19 \\ 2.53 \\ 1.14 \\ 0.59 \\ 0.26 \\ 0.09$	224.8 107.2 41.6 20.8 4.0 4.0 2.8 2.2 0.8	11.11 10.65 9.82 5.37 3.40 1.98 1.14 0.60 0.33 0.16
9 Incubation Temperature:	16.0°C		
mg at m ⁻³ Nitrite: 0.07 Nitrite: 0.02 Ammonia: 0.50 Silicate: 4.55 Phosphate: 0.48 Total number of cells: Total volume of cells: Mean volume of cells:	Chlorophyll: Carbon Nitrogen: Salinity: 30. 14.6 x 10 ⁶ 7-1 2.55 ppm 150 µ ³	mgrm ^{−3} 2.18 713 84 57 °‰	
α mg C (mg Chl α) ⁻¹ hr ⁻¹ (W	90% 10w m ⁻²) ⁻¹ 0.35 0.:	Confidence Interval er upper 30 0.40	
\mathcal{P}_{m}^{B} mg C (mg Chl α) ⁻¹ hr ⁻¹	-0.28 -0.0	-0.08 25 11.97	

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ○ ○ ○ ○

D3. Global marine phytoplankton production dataset accessed (Mattei & Scardi, 2021)

D3. Global marine phytoplankton production dataset accessed (Mattei & Scardi, 2021)

This dataset has **6084 production profiles**.

There are around 50 000 primary production incubations.

There are around 50 000 chlorophyll measurements.

D4. Local data repository created

An example of parameter estimation from Mattei & Scardi (2021) dataset

D5. Primary production measurements in the Adriatic

In situ primary production measurements were conducted at the following stations:

Kašetla bay: 23.1.2024., 16.2.2024., 15.3.2024., 2.4.2024., 9.10.2024., 16.11.2024., 10.12.2024.

Stončica station: 24.1.2024., 17.2.2024., 17.3.2024., 3.4.2024., 14.10.2024., 17.11.2024., 11.12.2024.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

D6. Modern capital theory applied to the study of marine photosynthesis

Bioeconomic interpretation of primary production models

Žarko Kovač¹, Davor Mance², Diana Mance^{3,*}, Shubha Sathyendranath⁴, Anja Kovač⁵

¹ Faculty of Science, University of Split, Rudera Boškovića 33, 21000 Split, Croatia

²University of Rijeka, Faculty of Economics, Ivana Filipovića 4, 51000 Rijeka, Croatia

³University of Rijeka, Faculty of Physics, Radmile Matejčić 2, 51000 Rijeka, Croatia

⁴ Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth PL1 3DH, UK

⁵Institute of Oceanography and Fisheries, Šetalište Ivana Meštrovića 63, 21000 Split, Croatia

* corresponding author: diana.mance@uniri.hr

Abstract

Mathematical models of marine primary production have long since been established in the occanographic literature. They are based on biophysical principles expressing the relation between the rate of carbon assimilation by photosynthesis in the presence of light, via mathematical functions called photosynthesis-irradiance functions. Here we make the case that marine primary production can also be studied using economic theory, by employing similarities in the mathematical apparatus used in biophysical and economic models. By using economic theory we provide a bioeconomic interpretation to the canonical model of primary production and derive a set of biocenomic indicators for marine primary production. It is shown that the photosynthesis-irradiance function can be interpreted as the marginal product of hytoplankton biomass and that the initial slope of the photosynthesis irradiance function equals the marginal product of light. It is also demonstrated that saturation of photosynthesis with respect to night is not on the word diministing returns. Watercolumn production and derive a set of biocet to unitients and its relation with respect to mixed layer depth are derived and interpreted using the lens of conomic theory. Finally, the theoretical significance of the approach is examined, highlighting instances in the literature where interactions between the disciplines of primary production production marked have been beneficial for both.

A paper under review

D7. Measuring primary production workshop

The first project workshop took place in Split in from 14th to 18th October.

D7. Measuring primary production workshop

The theme of the workshop was the creation of a database of quality-checked in situ primary production time series along with programming tools for handling such data sets. A detailed report from the workshop can be found here:

https://www.photoclim.org/workshops/measuring-primary-production/

D8. Educational material on primary production theory

Our first educational material is now available for download!

MODELLING PRIMARY PRODUCTION

https://www.photoclim.org/education/

D8. Educational material on primary production theory

2.3 PROPERTIES 13

2.3 PROPERTIES

The shape of the photosynthesis irradiance function expresses biophysical, biochemical and metabolic processes which regulate photosynthesis (r_1, r_2). Fortunately, just two parameters uniquely determine the photosynthesis irradiance function: the initial slope a^a and the assimilation number $P_{2}^{B}(4, s)$. The initial slope is also referred to as photosynthetic efficiency and the assimilation number as the photosynthesis cracking (4ϕ). Both parameters are referred to as the photosynthesis irradiance function: the written as a function of irradiance, in the following form Ide):

$$p^{B}(I) = p^{B}(I | \alpha^{B}, P_{m}^{B}),$$
 (20)

highlighting the role photosynthesis parameters have. Having defining the photosynthesis irradiance function with two parameters, a^B and P_{av}^B a whole family of photosynthesis irradiance functions is set. It is worth noting that the parameters are strictly positive.

The photosynthesis irradiance function itself is also positive and defined only for positive values of irradiance $I \ge 0$ [44]:

$$p^{B}(I) > 0.$$
 (21)

For low irradiance normalized production is a linear function of irradiance with a coefficient of proportionality given by α^B , and we write:

$$\lim_{n \to \infty} p^{B}(I) = \alpha^{B}I. \tag{22}$$

With increasing irradiance the slope of the curve drops. Finally, at high enough irradiance the slope flattens, and we have:

$$\lim_{l\to\infty} p^B(I) = P^B_m.$$
 (23)

In that case light saturation takes place and normalized production stops being dependent on irradiance (Figure 3). 14 PHOTOSYNTHESIS IRRADIANCE FUNCTIONS

Figure 3: A typical photosynthesis irradiance function.

Mathematically, for I > 0, photosynthesis irradiance function is a strictly increasing function:

$$\frac{dp^{B}(I)}{dI} > 0,$$
 (24)

and has a negative curvature:

$$\frac{d^2 p^B(I)}{dI^2} < 0.$$
 (25)

The ratio of photosynthesis parameters is called the photoadaptation parameter:

$$_{k} = \frac{P_{m}^{B}}{\alpha^{B}},$$
 (26)

オロト 本理 ト オヨト オヨト ヨー ろくつ

which is expressed in the same unit as irradiance, namely W m⁻². In the vicinity of l_k normalized production depends on both parameters a^B and P^B_{a} . With values of irradiance lover than l_k the a^B dominates, while at values higher than l_k , P^B_{a} dominates.

D8. Educational material on primary production theory

3.3 ANALYTICAL SOLUTION FOR THE DAILY PRODUCTION PROFILE 23

24 PRIMARY PRODUCTION PROFILE

3.3 ANALYTICAL SOLUTION FOR THE DAILY PRODUCTION PROFILE

By taking the previous expression for irradiance ($_{48}$) as the argument of the exponential photosynthesis irradiance function ($_{18}$) the defining integral for daily normalized production ($_{41}$) becomes:

$$P_{T}^{B}(z) = \int_{0}^{D} P_{m}^{B} \left[1 - \exp\left(-\alpha^{B} I_{0}^{m} \sin(\pi t/D) e^{-Kz} / P_{m}^{B}\right) \right] dt. \quad (49)$$

The solution of this integral gives the amount of carbon assimilated at depth during one day per unit biomass. To solve it we begin by defining the dimensionless noon irradiance as:

$$I_*^m = \frac{\alpha^B I_0^m}{P_m^B} = \frac{I_0^m}{I_k},$$
 (50)

which represents the ratio of the photoadaptation parameter to noon irradiance. As such it scales noon irradiance relative to the photoadaptation parameter. Using (50) translates the previous integral into:

$$P_T^B(z) = \int_0^D P_m^B \left[1 - \exp\left(-I_*^m e^{-Kz} \sin(\pi t/D) \right) \right] dt.$$
 (51)

To solve it, the expansion of the exponential function as an infinite sum is used:

$$\exp x = \sum_{n=0}^{\infty} \frac{x^n}{n!}.$$
(52)

After inserting this identity into the previous integral we obtain:

$$P_{T}^{B}(z) = \int_{0}^{D} P_{m}^{B} \left(1 - \sum_{n=0}^{\infty} \frac{\left(-l_{*}^{m} e^{-Kz} \sin\left(\pi t/D\right) \right)^{n}}{n!} \right) dt,$$
(53)

which after some algebra becomes:

$$P_{T}^{\rm B}(z) = -P_{m}^{\rm B} \sum_{n=1}^{\infty} \frac{\left(-I_{*}^{\rm m} e^{-Kz}\right)^{n}}{n!} \int_{0}^{D} \sin^{n}\left(\pi t/D\right) {\rm d}t.$$
(54)

Next step is to employ the following substitution:

by which the integral in the previous expression becomes:

$$\int_{0}^{D} \sin^{n}(\pi t/D) dt = \frac{D}{\pi} \int_{0}^{\pi} \sin^{n} x dx.$$
(56)

Normalized daily production is now:

$$P_T^B(z) = -P_m^B D \sum_{n=1}^{\infty} \frac{(-I_*^m e^{-Kz})^n}{\pi \cdot n!} \int_0^{\pi} \sin^n x \, dx.$$
 (57)

The obtained integral is solved by recursive application of the following identity:

 $x = \frac{\pi t}{D}$

$$\int_{0}^{\pi} \sin^{n} x \, dx = \frac{n-1}{n} \int_{0}^{\pi} \sin^{n-2} x \, dx. \quad (58)$$

To apply it we first break the previous sum into sums over odd and even integers, to get:

$$P_{T}^{B}(z) = -P_{m}^{B}D\left(\sum_{n=1}^{\infty} \frac{(-I_{m}^{m}e^{-Kz})^{2n-1}}{\pi(2n-1)!} \int_{0}^{\pi} \sin^{2n-1}x \, dx + \sum_{n=1}^{\infty} \frac{(-I_{m}^{m}e^{-Kz})^{2n}}{\pi(2n)!} \int_{0}^{\pi} \sin^{2n}x \, dx\right).$$
(59)

Going step by step, for n = 1 we have:

$$\sin x \, \mathrm{d}x = 2. \tag{60}$$

For n = 2 we have:

$$\int \sin^2 x \, \mathrm{d}x = \frac{\pi}{2}.\tag{61}$$

Subsequently, for several more values of n we have:

D9. & D10. Training

The 6th edition of the advanced IOCCG Summer Lecture Series: Frontiers in Ocean Optics and Ocean Colour Science was held during 4-16 November 2024 in Hyderabad, India. Our team member Shubha Sathyendranath was part of the organization committee and our team member Leon Ćatipović was one of the attendees.

D11. Attendance at conferences

Leon Ćatipović and Žarko Kovač attended the Ocean Optics conference in Las Palmas, Gran Canaria. The six day conference started on the 6 October and was held at the Palacio de Congresos located along Playa de Las Canteras. It is considered the leading conference in the filed of ocean optics. In total there were over 350 attendees from around the globe.

Leon presented his work on validation of gap-filled satellite-detected surface chlorophyll concentration in the Adriatic and Ionian basin. Žarko served as a planning committee member.

D12. Scientific publications

Critical Times for the Critical Depth Theory

Žarko Kovač^{1,*} & Shubha Sathyendranath²

¹Faculty of Science, University of Split, Rudera Boškovića 33, 21000 Split, Croatia ²National Centre for Earth Observations, Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth PL1 3DH, UK ^{*}corresponding author: zkovac@pmfst.hr

Abstract

Critical Depth Hypothesis is arguably one of the longest standing biophysical theories in oceanography and is the earliest mathematically formulated theory aimed at explaining the phenomenon of phytoplankton blooms. It introduces a depth horizon, termed the critical depth, at which the integrated primary production from the surface to that depth equals the integrated loss terms within the same laver. If the mixed laver is deeper than the critical depth, average light level in the mixed layer falls below that required to maintain photosynthesis at a level that equals losses. A related horizon in case of week mixing is the compensation depth, where the rate of photosynthesis matches the loss rate. In this paper the effect of phytoplankton light attenuation on the critical depth is examined, showing that it creates a bio-optical feedback in the model. A new differential equation, derived for the time evolution of the compensation depth reveals that the light intensities at both the compensation depth and the critical depth are constants of motion. A common model assumption of zero biomass below the mixed laver is derived as a consequence of the bio-optical feedback in the mixed laver. Exact solutions for average and total mixed layer biomass at steady state are derived and their stability properties analysed. It is demonstrated that the system has a trivial and a non-trivial steady state. An existence of a bio-optical bifurcation is shown, in which the mixed layer depth acts as the bifurcation parameter. The critical depth is identified as the bifurcation point at which the trivial and the non-trivial steady state exchange stability properties. Transients between steady states are also explored and it is shown that the relation between the initial condition and the final steady state is paramount. in determining whether a shallowing or deepening of the mixed layer will lead to a rise or a decline in biomass over time.

A paper under review

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

D12. Scientific publications

Island Trapped Waves Enhance Primary Production in Idealized Numerical Models

Jasen R. Jacobsen¹, Christopher A. Edwards¹, Žarko Kovač², Hrvoje Mihanović³, Zrinka Ljubešić⁴

> ¹University of California Santa Cruz ²University of Split. ³Institute of Oceanography and Fisheries, Split ⁴University of Zagreb, Faculty of Science ¹1156 High St, Santa Cruz, CA 95004, USA ²U, Ruder Boiskovića 31, 21000, Split, Croatia ³Betaliste Ivana Meštrovića 63, 21000, Split, Croatia ⁴Horoztova 102A, Zagreb, Croatia

Key Points:

- Island trapped waves excited by wind stress at both resonant and offresonant frequencies enhance local primary production.
- Island trapped waves enhance diffusive and advective flux divergences that elevate local nutrient levels, increasing primary production.
- The magnitude of enhanced primary production is determined by nutrient enrichment, while light availability controls the spatial pattern.

Abstract

An Island trapped wave (ITW) is a special case of coastal trapped waves where baroclinic energy becomes confined around an island and propagates at the forcing frequency. Developing evidence indicates that ITWs affect primary production. We investigate this interaction with numerical experiments conducted in the Regional Ocean Modeling System (ROMS) coupled with a simple NPZD ecosystem model. We examine ecosystem responses to ITWs under different surface light and wind stress conditions. Simulations reveal that the ITW propagates as a nonlinear wave with sharp downwelling preceded by a broad upwelling period. In our base configuration with constant light forcing, the ITW is forced by homogeneous clockwise rotational wind stress at the resonant frequency, elevated nutrients result in an increase in depth-integrated primary production within the ITW influence zone. When subjected to light that changes on a diel cycle, the ITW resulted in a larger increase in primary production. Greater wind stress and forcing the wave at a higher frequency than resonant result in the most substantial primary production enhancements. Primary production is analyzed through a metric dependent on correlations between phytoplankton biomass, nutrient levels, and light availability. In constant light experiments, primary production responses result from a correlation between phytoplankton biomass and nutrient levels. Diel light cycle simulations demonstrate an asymmetric enhancement of primany production around the island due to an elevated correlation between light and nutrient fluctuations. ITW's forced at off-resonant frequencies suggest that they are more common than previously thought and contribute to elevated primary production around islands.

A paper under review

Thank you!

・ロト・西ト・西ト・ 中国・ トロト